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3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the
economy of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in
general and various methods have been developed in special cases. In this section we describe one
such method, called diagonalization, which is one of the most important techniques in linear algebra.
A very fertile example of this procedure is in modelling the growth of the population of an animal
species. This has attracted more attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin by setting up a simple model
of a bird population in which we make assumptions about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males
and females are nearly equal, we count only females. We assume that each female remains a
juvenile for one year and then becomes an adult, and that only adults have offspring. We
make three assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult
females alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival
rate is 1

2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile
survival rate is 1

4).

If there were 100 adult females and 40 juvenile females alive initially, compute the
population of females k years later.

Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after
k years, so that the total female population is the sum ak + jk. Assumption 1 shows that
jk+1 = 2ak, while assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak

and jk in successive years are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak
jk

]
and A =

[ 1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2
gives v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .
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Since v0 =

[
a0
j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to

computing Ak for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some
new techniques have been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a
linear dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1)
by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they
imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.
Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt

an indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is,
to find an invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation
3.8 enables us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can
solve Equation 3.8 for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1
If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8.
To do this it is necessary to first compute certain numbers (called eigenvalues) associated with the
matrix A.

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of
the time t, and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of
time.
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Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a
λ -eigenvector for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with

corresponding eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we
develop a general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax = λx for some
column x 6= 0. This is equivalent to asking that the homogeneous system

(λ I −A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if
the matrix λ I −A is not invertible and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

det (λ I −A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI −A)

Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n× n
matrix (this is illustrated in the examples below). The above discussion shows that a number λ is
an eigenvalue of A if and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic
polynomial cA(x). We record these observations in
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Theorem 3.3.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian
elimination, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5).
For now, the examples and exercises will be constructed so that the roots of the characteristic
polynomials are relatively easy to find (usually integers). However, the reader should not be misled
by this into thinking that eigenvalues are so easily obtained for the matrices that occur in practical
applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2,

and then find all the eigenvalues and their eigenvectors.

Solution. Since xI −A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det
[

x−3 −5
−1 x+1

]
= x2 −2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note
that λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one:
λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I −A)x =

[
λ2 −3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t
[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t
[
−1

1

]
where t 6= 0 is arbitrary.

Similarly, λ1 = 4 gives rise to the eigenvectors x = t
[

5
1

]
, t 6= 0 which includes the

observation in Example 3.3.2.

Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ .
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In fact every nonzero solution x of (λ I −A)x = 0 is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined by the gaussian algorithm (see
Theorem 1.3.2). Observe that any nonzero multiple of an eigenvector is again an eigenvector,9 and
such multiples are often more convenient.10 Any set of nonzero multiples of the basic solutions of
(λ I −A)x = 0 will be called a set of basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =

 2 0 0
1 2 −1
1 3 −2


Solution. Here the characteristic polynomial is given by

cA(x) = det

 x−2 0 0
−1 x−2 1
−1 −3 x+2

= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2,
compute

λ1I −A =

 λ1 −2 0 0
−1 λ1 −2 1
−1 −3 λ1 +2

=

 0 0 0
−1 0 1
−1 −3 4


We want the (nonzero) solutions to (λ1I −A)x = 0. The augmented matrix becomes 0 0 0 0

−1 0 1 0
−1 −3 4 0

→

 1 0 −1 0
0 1 −1 0
0 0 0 0


using row operations. Hence, the general solution x to (λ1I −A)x = 0 is x = t

 1
1
1

 where t

is arbitrary, so we can use x1 =

 1
1
1

 as the basic eigenvector corresponding to λ1 = 2. As

the reader can verify, the gaussian algorithm gives basic eigenvectors x2 =

 0
1
1

 and

x3 =

 0
1
3
1

 corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate

fractions, we could instead use 3x3 =

 0
1
3

 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and
hence the same eigenvalues.

Solution. We use the fact that xI −AT = (xI −A)T . Then

cAT (x) = det
(
xI −AT)= det

[
(xI −A)T ]= det (xI −A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the
same eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic

polynomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not
computed as the roots of the characteristic polynomial. There are iterative, numerical methods (for
example the QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept.
A line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think
of A as a linear transformation R2 → R2, this asks that A carries L into itself, that is the image Ax
of each vector x in L is again in L.

Example 3.3.6

The x axis L =

{[
x
0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b
0 c

]
because

[
a b
0 c

][
x
0

]
=

[
ax
0

]
is L for all x =

[
x
0

]
in L

Lx

x

0 x

y
To see the connection with eigenvectors, let x 6= 0 be any nonzero

vector in R2 and let Lx denote the unique line through the origin con-
taining x (see the diagram). By the definition of scalar multiplication
in Section 2.6, we see that Lx consists of all scalar multiples of x, that
is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ

in R. Then if tx is in Lx then
A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in
Lx). Hence Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:
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Theorem 3.3.3
Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the
origin in R2 containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π, show that A =

[
cosθ −sinθ

sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2 −1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is
not a multiple of π, this shows that no line through the origin is A-invariant. Hence A
has no eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5.
If x is any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x.
Hence 1 is an eigenvalue (with eigenvector x).

If θ = π

2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no

root in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the

complex numbers i and −i, with corresponding eigenvectors
[

1
−i

]
and

[
1
i

]
In other words, A

has eigenvalues and eigenvectors, just not real ones.
Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues.

While these eigenvalues may very well be real, this suggests that we really should be doing linear
algebra over the complex numbers. Indeed, everything we have done (gaussian elimination, matrix
algebra, determinants, etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that
is if D has the form

D =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D= diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE
and sum D+E are again diagonal, and are obtained by doing the same operations to corresponding
diagonal elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1 +µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion
preceding it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and
look for ways to determine when such xi exist and how to compute them. To this end, write P in
terms of its columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation
AP = PD becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn


By the definition of matrix multiplication, each side simplifies as follows[

Ax1 Ax2 · · · Axn
]
=
[

λ1x1 λ2x2 · · · λnxn
]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and
the columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4
Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the
matrix P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the
eigenvalue of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =

 2 0 0
1 2 −1
1 3 −2

 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =

 1
1
1

 , x2 =

 0
1
1

, and x3 =

 0
1
3

 respectively.

Since the matrix P =
[

x1 x2 x3
]
=

 1 0 0
1 1 1
1 1 3

 is invertible, Theorem 3.3.4 guarantees

that

P−1AP =

 λ1 0 0
0 λ2 0
0 0 λ3

=

 2 0 0
0 1 0
0 0 −1

= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigen-
vectors x1, x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ =
diag (λ2, λ1, λ3) is diagonal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we
can choose the diagonalizing matrix P so that the eigenvalues λi appear in any order we want along
the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonal-
izable matrix where this is not the case.



3.3. Diagonalization and Eigenvalues 187

Example 3.3.9

Diagonalize the matrix A =

 0 1 1
1 0 1
1 1 0


Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI −A to
row 1:

cA(x) = det

 x −1 −1
−1 x −1
−1 −1 x

= det

 x−2 x−2 x−2
−1 x −1
−1 −1 x


= det

 x−2 0 0
−1 x+1 0
−1 0 x+1

= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I −A)x = 0 has general solution x = t

 1
1
1

 as the reader can verify, so a basic

λ1-eigenvector is x1 =

 1
1
1

.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I −A)x = 0. By gaussian

elimination, the general solution is x = s

 −1
1
0

+ t

 −1
0
1

 where s and t are arbitrary.

Hence the gaussian algorithm produces two basic λ2-eigenvectors x2 =

 −1
1
0

 and

y2 =

 −1
0
1

 If we take P =
[

x1 x2 y2
]
=

 1 −1 −1
1 1 0
1 0 1

 we find that P is invertible.

Hence P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some
terminology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as
a root of the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the
gaussian algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This



188 CONTENTS

works in general.

Theorem 3.3.5
A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system
(λ I −A)x = 0 has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6
An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in
Chapter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ

as basic solutions of the homogeneous system (λ I −A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its
columns is a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this
case the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue
λ1 = 1 of multiplicity 2. But the system of equations (λ1I −A)x = 0 has general solution

t
[

1
0

]
, so there is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is

not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix
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P. But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.

Diagonalizable matrices share many properties of their eigenvalues. The following example
illustrates why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ

3
n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A,
an argument similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals
with the case p(x) = x3 − 5x. In general, p(A) is called the evaluation of the polynomial p(x) at
the matrix A. For example, if p(x) = 2x3 −3x+5, then p(A) = 2A3 −3A+5I—note the use of the
identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0
for each eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A.
This is, in fact, true for any square matrix, diagonalizable or not, and the general result is called
the Cayley-Hamilton theorem. It is proved in Section ?? and again in Section ??.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population
of a species of birds as time goes on. As promised, we now complete the example—Example 3.3.12
below.

The bird population was described by computing the female population profile vk =

[
ak
jk

]
of

the species, where ak and jk represent the number of adult and juvenile females present k years
after the initial values a0 and j0 were observed. The model assumes that these numbers are related
by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[ 1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine
the population profile vk for all values of k in terms of the initial values.
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Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .

Solution. The characteristic polynomial of the matrix A =

[ 1
2

1
4

2 0

]
is

cA(x) = x2 − 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors
[ 1

2
1

]
and

[
−1

4
1

]
. For convenience, we

can use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]
This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1

−2 4

]
= 1

6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain[
ak
jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100
40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220

3 + 80
3

(
−1

2

)k and jk = 440
3 + 320

3

(
−1

2

)k for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a
measure of how these numbers behave for large values of k. This is easy to obtain here.
Since (−1

2)
k is nearly zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear
dynamical system if v0 is specified and v1, v2, . . . are given by the matrix recurrence
vk+1 = Avk for each k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these
powers can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give
a nice “formula” for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigen-
vectors x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns,

then P is invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =


b1
b2
...

bn


Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn
]


λ k
1 0 · · · 0

0 λ k
2 · · · 0

... ... . . . ...
0 0 · · · λ k

n




b1
b2
...

bn



=
[

x1 x2 · · · xn
]


b1λ k
1

b2λ k
2...

b3λ k
n


= b1λ

k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to
estimate vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has
a largest eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has
multiplicity 1 and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Exam-
ple 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the
order in which the columns xi are placed in P, we may assume that λ1 is dominant among the
eigenvalues λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact
expression for vk in Equation 3.10 above:

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ
k
1

[
b1x1 +b2

(
λ2
λ1

)k
x2 + · · ·+bn

(
λn
λ1

)k
xn

]
for each k ≥ 0. Since λ1 is dominant, we have |λi| < |λ1| for each i ≥ 2, so each of the numbers
(λi/λ1)

k become small in absolute value as k increases. Hence vk is approximately equal to the first
term λ k

1 b1x1, and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following

theorem (together with the above exact formula for vk).

Theorem 3.3.7
Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =


b1
b2
...

bn


Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ
k
1 x1 for sufficiently large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with

eigenvector x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
.

Hence b1 =
220

3 in the notation of Theorem 3.3.7, so[
ak
jk

]
= vk ≈ b1λ

k
1 x1 =

220
3 1k

[
1
2

]
where k is large. Hence ak ≈ 220

3 and jk ≈ 440
3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section ??.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk − xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk − xk+1 repeatedly gives

x2 = 2x0 − x1 = 3, x3 = 2x1 − x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for

each k instead, and then retrieve xk as the top component of vk. The reason this works is
that the linear recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk − xk+1

]
= Avk where A =

[
0 1
2 −1

]
The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1

−2

]
and x2 =

[
1
1

]
,

so the diagonalizing matrix is P =

[
1 1

−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is[

xk
xk+1

]
= vk = b1λ

k
1 x1 +b2λ

k
2 x2 =

2
3(−2)k

[
1

−2

]
+ 1

31k
[

1
1

]
Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy
|λ1|= |λ2|> |λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 +b2λ k
2 x2 for large k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory
of the system starting at v0. It is instructive to obtain a graphical plot of the system by writing

vk =

[
xk
yk

]
and plotting the successive values as points in the plane, identifying vk with the point

(xk, yk) in the plane. We give several examples which illustrate properties of dynamical systems.
For ease of calculation we assume that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y
Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]
for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories
are plotted in the diagram and, for each choice of v0,
the trajectories converge toward the origin because both
eigenvalues are less than 1 in absolute value. For this reason,
the origin is called an attractor for the system.

Example 3.3.16

O x

y
Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as

before. The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]
for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the
origin for every choice of initial point V0. For this reason,
the origin is called a repellor for the system.
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Example 3.3.17

O
x

y
Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 ,

with corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]
for k = 0, 1, 2, . . . . In this case 3

2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(3

2

)k
[
−1

1

]
for large k and

vk is approaching the line y =−x.

However, if b1 = 0, then vk = b2
(1

2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories
appear as in the diagram, and the origin is called a saddle

point for the dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues

are the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real

matrix. However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram.
Here each trajectory spirals in toward the origin, so the
origin is an attractor. Note that the two (complex) eigenvalues
have absolute value less than 1 here. If they had absolute
value greater than 1, the trajectories would spiral out from
the origin.



196 CONTENTS

Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web.
If an information query comes in from a client, Google has a sophisticated method of establishing
the “relevance” of each site to that query. When the relevant sites have been determined, they
are placed in order of importance using a ranking of all sites called the PageRank. The relevant
sites with the highest PageRank are the ones presented to the client. It is the construction of the
PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to
site i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j,
then i is regarded as more “important” and assigned a higher PageRank. One way to look at this
is to view the sites as vertices in a huge directed graph (see Section 2.2). Then if site j links to site
i there is an edge from j to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix
(called the connectivity matrix in this context). Thus a large number of 1s in row i of this matrix
is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively,
the higher the rank of these sites, the higher the rank of site i. One approach is to compute a
dominant eigenvector x for the connectivity matrix. In most cases the entries of x can be chosen
to be positive with sum 1. Each site corresponds to an entry of x, so the sum of the entries of sites
linking to a given site i is a measure of the rank of site i. In fact, Google chooses the PageRank of
a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the character-
istic polynomial, eigenvalues, eigenvectors, and (if
possible) an invertible matrix P such that P−1AP is
diagonal.

A =

[
1 2
3 2

]
a) A =

[
2 −4

−1 −1

]
b)

A =

 7 0 −4
0 5 0
5 0 −2

c) A=

 1 1 −3
2 0 6
1 −1 5

d)

A=

 1 −2 3
2 6 −6
1 2 −1

e) A =

 0 1 0
3 0 1
2 0 0

f)

A=

 3 1 1
−4 −2 −5

2 2 5

g) A =

 2 1 1
0 1 0
1 −1 2

h)

A =

 λ 0 0
0 λ 0
0 0 µ

, λ 6= µi)

b. (x−3)(x+2);3;−2;
[

4
−1

]
,
[

1
1

]
;

P =

[
4 1

−1 1

]
; P−1AP =

[
3 0
0 −2

]
.

13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages

101–103, and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7
billion” by Cleve Moler, Matlab News and Notes, October 2002, pages 12–13.

https://en.wikipedia.org/wiki/PageRank
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d. (x−2)3;2;

 1
1
0

 ,

 −3
0
1

; No such P; Not di-

agonalizable.

f. (x + 1)2(x − 2);−1, −2;

 −1
1
2

 ,

 1
2
1

; No

such P; Not diagonalizable. Note that this
matrix and the matrix in Example 3.3.9 have
the same characteristic polynomial, but that
matrix is diagonalizable.

h. (x− 1)2(x− 3);1, 3;

 −1
0
1

 ,

 1
0
1

 No such

P; Not diagonalizable.

Exercise 3.3.2 Consider a linear dynamical sys-
tem vk+1 = Avk for k ≥ 0. In each case approximate
vk using Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3

−1

]

c. A =

 1 0 0
1 2 3
1 4 1

 , v0 =

 1
1
1



d. A =

 1 3 2
−1 2 1

4 −1 −1

 , v0 =

 2
0
1



b. Vk =
7
3 2k

[
2
1

]

d. Vk =
3
2 3k

 1
0
1


Exercise 3.3.3 Show that A has λ = 0 as an eigen-
value if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n×n matrix and
put A1 = A−αI, α in R. Show that λ is an eigen-
value of A if and only if λ −α is an eigenvalue of
A1. (Hence, the eigenvalues of A1 are just those of A

“shifted” by α.) How do the eigenvectors compare?

Ax = λx if and only if (A−αI)x = (λ −α)x. Same
eigenvectors.

Exercise 3.3.5 Show that the eigenvalues of[
cosθ −sinθ

sinθ cosθ

]
are eiθ and e−iθ .

(See Appendix ??)

Exercise 3.3.6 Find the characteristic polynomial
of the n× n identity matrix I. Show that I has ex-
actly one eigenvalue and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b
c d

]
show that:

a. cA(x) = x2 − tr Ax+ det A, where tr A = a+d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−d)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then
compute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]
[Hint:

(PDP−1)n = PDnP−1 for each n = 1, 2, . . . .]

b. P−1AP =

[
1 0
0 2

]
, so An = P

[
1 0
0 2n

]
P−1 =[

9−8 ·2n 12(1−2n)
6(2n −1) 9 ·2n −8

]
Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that

A and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix

A such that D+A is not diagonalizable.

b. A =

[
0 1
0 2

]



198 CONTENTS

Exercise 3.3.10 If A is an n×n matrix, show that
A is diagonalizable if and only if AT is diagonaliz-
able.

Exercise 3.3.11 If A is diagonalizable, show that
each of the following is also diagonalizable.

a. An, n ≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

b. and d. PAP−1 = D is diagonal, then
b. P−1(kA)P = kD is diagonal, and d.
Q(U−1AU)Q = D where Q = PU .

Exercise 3.3.12 Give an example of two diago-
nalizable matrices A and B whose sum A+B is not
diagonalizable.[

1 1
0 1

]
is not diagonalizable by Example 3.3.8.

But
[

1 1
0 1

]
=

[
2 1
0 −1

]
+

[
−1 0

0 2

]
where[

2 1
0 −1

]
has diagonalizing matrix P =

[
1 −1
0 3

]
and

[
−1 0

0 2

]
is already diagonal.

Exercise 3.3.13 If A is diagonalizable and 1 and
−1 are the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0
and 1 are the only eigenvalues, show that A2 = A.

We have λ 2 = λ for every eigenvalue λ (as λ = 0, 1)
so D2 = D, and so A2 = A as in Example 3.3.9.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0
for each eigenvalue of A, show that A = B2 for some
matrix B.

Exercise 3.3.16 If P−1AP and P−1BP are both
diagonal, show that AB = BA. [Hint: Diagonal ma-
trices commute.]

Exercise 3.3.17 A square matrix A is called nilpo-
tent if An = 0 for some n ≥ 1. Find all nilpotent
diagonalizable matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and
r 6= 0 a real number.

a. Show that the eigenvalues of rA are precisely
the numbers rλ , where λ is an eigenvalue of
A.

b. Show that crA(x) = rncA
( x

r

)
.

b. crA(x) = det [xI − rA]
= rn det

[ x
r I −A

]
= rncA

[ x
r

]
Exercise 3.3.19

a. If all rows of A have the same sum s, show that
s is an eigenvalue.

b. If all columns of A have the same sum s, show
that s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n ma-
trix.

a. Show that the eigenvalues of A are nonzero.

b. Show that the eigenvalues of A−1 are precisely
the numbers 1/λ , where λ is an eigenvalue of
A.

c. Show that cA−1(x) = (−x)n

det A cA
(1

x

)
.

b. If λ 6= 0, Ax = λx if and only if A−1x = 1
λ

x.
The result follows.

Exercise 3.3.21 Suppose λ is an eigenvalue of a
square matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the
same x).

b. Show that λ 3 −2λ +3 is an eigenvalue of
A3 −2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for
any nonzero polynomial p(x).
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b. (A3 − 2A − 3I)x = A3x − 2Ax + 3x = λ 3x −
2λx+3x = (λ 3 −2λ −3)x.

Exercise 3.3.22 If A is an n×n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpo-
tent if Am = 0 for some m ≥ 1.

a. Show that every triangular matrix with zeros
on the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only
eigenvalue (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpo-
tent.

b. If Am = 0 and Ax = λx, x 6= 0, then A2x =
A(λx) = λAx = λ 2x. In general, Akx = λ kx
for all k ≥ 1. Hence, λ mx = Amx = 0x = 0, so
λ = 0 (because x 6= 0).

Exercise 3.3.24 Let A be diagonalizable with real
eigenvalues and assume that Am = I for some m ≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I. [Hint: Theo-
rem ??]

a. If Ax = λx, then Akx = λ kx for each k. Hence
λ mx = Amx = x, so λ m = 1. As λ is real,
λ = ±1 by the Hint. So if P−1AP = D is di-
agonal, then D2 = I by Theorem 3.3.4. Hence
A2 = PD2P = I.

Exercise 3.3.25 Let A2 = I, and assume that A 6= I
and A 6=−I.

a. Show that the only eigenvalues of A are λ = 1
and λ =−1.

b. Show that A is diagonalizable. [Hint: Verify
that A(A+ I) = A+ I and A(A− I) = −(A− I),
and then look at nonzero columns of A+ I and
of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx
where m 6= 0, use (b) to show that the matrix
of Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theo-
rem 3.3.3.

Exercise 3.3.26 Let A =

 2 3 −3
1 0 −1
1 1 −2

 and B = 0 1 0
3 0 1
2 0 0

. Show that cA(x) = cB(x) = (x+1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A
that has only one eigenvalue λ is the scalar
matrix A = λ I.

b. Is
[

3 −2
2 −1

]
diagonalizable?

a. We have P−1AP = λ I by the diagonalization
algorithm, so A = P(λ I)P−1 = λPP−1 = λ I.

b. No. λ = 1 is the only eigenvalue.

Exercise 3.3.28 Characterize the diagonalizable
n×n matrices A such that A2 −3A+2I = 0 in terms
of their eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. If B and C are diagonalizable via Q and R (that
is, Q−1BQ and R−1CR are diagonal), show that

A is diagonalizable via
[

Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1

−1 7

]
.
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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that
[

x
0

]
and

[
0
y

]
are eigen-

vectors of A, and show how every eigenvector
of A arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Ex-
ample 3.3.1, determine if the population stabilizes,
becomes extinct, or becomes large in each case. De-
note the adult and juvenile survival rates as A and
J, and the reproduction rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

b. λ1 = 1, stabilizes.

d. λ1 =
1

24(3+
√

69) = 1.13, diverges.

Exercise 3.3.32 In the model of Example 3.3.1,
does the final outcome depend on the initial popu-
lation of adult and juvenile females? Support your
answer.

Exercise 3.3.33 In Example 3.3.1, keep the same
reproduction rate of 2 and the same adult survival
rate of 1

2 , but suppose that the juvenile survival rate
is ρ. Determine which values of ρ cause the popula-
tion to become extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the ju-
venile survival rate be 2

5 and let the reproduc-
tion rate be 2. What values of the adult survival
rate α will ensure that the population stabilizes?

Extinct if α < 1
5 , stable if α = 1

5 , diverges if α > 1
5 .
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